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Abstract: The temperature of a combustible material will rise or even blow up when a heat source moves across it.
In this paper, we study the blow-up phenomenon in this kind of moving heat source problems in two-dimensions.
First, a two-dimensional heat equation with a nonlinear source term is introduced to model the problem. The
nonlinear source is localized around a circle which is allowed to move. By using the coordinate transformation,
the equation is simplified to a one-dimensional one. Then it is solved by the moving collocation method. The
numerical results show that the blow-up occurs if the speed of the heat source is slow, and the blow-up is avoided
when the heat source moves fast enough.

Key–Words: Moving heat source, Blow-up, Moving mesh method, Reaction-diffusion equation, Moving colloca-
tion method, Local absorbing boundary conditions

1 Introduction

When a laster beam moves across a combustible ma-
terial, the temperature will rise or even blow up.
This kind of moving heat source problems in one-
dimension have been well studied both by analytical
methods and numerical methods [1, 2, 3, 4]. These
studies show that the speed of the heat source will in-
fluence the blow-up. When the heat source moves fast
enough, the blow-up will be prevented. In [4], the
influences of the distance of two heat sources in oc-
currence of blow-up are also investigated.

In one-dimensional problems, the nonlinear heat
source is modeled by a delta-function which means
the source is extremely intense. While the point
source delta-function model is appropriate in one-
dimensional problems, it is not for high-dimensional
problems [5, 6]. The blow-up will always happen if
the point source is used in high-dimensions. This is
meaningless from the physical viewpoint. Kirk [6]
developed a new mathematical modeling in which the
source is localized in a small bounded and convex do-
main. Then the influence of the velocity, the size and
the strength of the source is investigated by using the
analytical method.

The objective of the present work is to investi-
gate the influence of the velocity of the heat source on
the blow-up in two-dimensions by using the numeri-
cal method. The problem is modeled by the following

reaction-diffusion equation( ∂
∂t

−∆
)
T (x, y, t) =

D(x, y|x0, y0)F [T (x0, y0, t)],

−∞ < x, y < ∞, t > 0, (1)
T (x, y, 0) = T0(x, y) ≥ 0, x, y ∈ R, (2)
T (x, y, t) → 0 as x2 + y2 → ∞, t > 0, (3)

with

D(x, y|x0, y0)

=
1

ϵ
max

(
0,

1

ϵ
[ϵ−
∣∣√x2+y2−

√
x20+y20

∣∣]),(4)

where ϵ is a parameter which indicates the width
of the source. In the above model, T (x, y, t) de-
notes the temperature at any point (x, y), and (x0, y0)
is the location of the traveling heat source satisfied√

x0(t)2 + y0(t)2 = r0(t). The initial temperature
T0(x, y) is continuous and bounded with T0(x, y) →
0 as x2 + y2 → ∞. The nonlinear source function
F (T ) is smooth and satisfy,

F (k)(T ) > 0, k = 0, 1, 2, for T > 0.

The support for the localization function
D(x, y|x0, y0) which defines the shape and magni-
tude of the localized source is not convex. This is
different from the model in paper [6]. To our best
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knowledge, there are not any theoretical or numerical
results for this kind of moving heat source problems.
However, the numerical simulation of the model
(1)-(4) is difficult because of the moving singularity,
the blowup phenomenon and the unbounded spatial
domain in R2.

The moving mesh partial differential equation
(MMPDE) method is very efficient to solve these sin-
gular equations [7, 8]. It has been applied in a few
blow-up problems in bounded one-dimensional do-
main [3, 4, 9, 10, 11, 12, 14, 15]. In paper [3], Ma
etc. use one of the moving mesh partial differential
equations, MMPDE6, to compute a one-dimensional
reaction-diffusion equation with a heat source which
is modeled by a delta function. Based on the idea of
the immersed interface method [16], an accurate ap-
proximate scheme is constructed. And five different
approximations are derived depending on the location
of the heat source. Then an accurate moving mesh al-
gorithm is developed. In [4], the authors developed a
new moving mesh method for the same equation with
two or more heat sources by adding auxiliary mesh
points exactly at the heat sources to capture the singu-
larity. This method simplify the moving method algo-
rithm of [3].

In papers [9, 10, 11], the monitor function is stud-
ied for the blow-up problems. Dimension analysis and
dominance of equidistribution are proposed for choos-
ing appropriate monitor functions. In [12], the authors
investigate the parameter τ in MMPDE. They find that
the constant value of the parameter τ sometimes may
not be appropriate. Then they suggest an adaptive
strategy for choosing a time-dependent parameter τ .
In papers [14, 15], the moving collocation method is
used in solving kinds of blow-up problems.

Recently, the blow-up problems in unbounded
spatial domain are investigated [18, 22]. A novel lo-
cal absorbing boundary conditions (LABCs) method
is introduced and analyzed. Based on these works,
Qiang [17] combine the LABCs method and the MM-
PDE method to capture the qualitative behavior of
the blow-up singularities in the one-dimensional un-
bounded domain. Compared to the LABCs method on
the fixed mesh, the combination of LABCs and MM-
PDE method is more efficient. There is no doubt that
it is also very efficient to solve the blow-up problems
in two-dimensions by combining the LABCs method
and the MMPDE method. But general speaking, the
blow-up problems in high-dimensions are difficult and
very few adaptive numerical methods have been de-
veloped [19, 20, 21].

In this paper, the moving collocation method
[23, 13] and the local absorbing boundary method [22]
will be combined to solve the model (1)-(4). First, we
choose a circular artificial boundary ΓR for equation

(1). Then the artificial boundary conditions are con-
ducted and equation (1) is transformed to the polar
coordinate form. Thus, the reaction-diffusion equa-
tion (1) in unbounded domain is changed to a new
one which is defined in the moving bounded domain.
By using a coordinate transformation, it will be eas-
ily changed to a fixed boundary problem. This new
problem is then reduced to a one-dimensional equa-
tion considering its symmetry around the arc. At last,
we simulate the blow-up by the moving collocation
method. The numerical results show that the blow-up
occurs if the speed of the heat source is slow, and the
blow-up is avoided when the heat source moves fast
enough.

The remaining parts of the paper are organized as
follows. In section 2, the modeling is simplified to
a one-dimensional reaction-diffusion equation by us-
ing local absorbing boundary conditions method and
several coordinate transformations. In section 3, the
numerical scheme is derived. In section 4, a number
of numerical experiments are presented. Finally, con-
clusions are given in section 5.

2 Local absorbing boundary condi-
tions and coordinate transforma-
tion

Introducing the coordinate transformation{
x = r cos θ
y = r sin θ

, (5)

we denote

T (x, y, t) = T (r cos θ, r sin θ, t) ≡ u(r, θ, t).

Following the artificial boundary condition method
[22], we choose a circular artificial boundary ΓR,

ΓR =
{
(r, θ)

∣∣r = R, 0 ≤ θ ≤ 2π
}
, (6)

where R = 2r0(t). Then the model (1)-(4) is changed
to the following form

ut = urr +
1

r
ur +

1

r2
uθθ

+D(r|r0)F [u(r0, θ, t)],

0 ≤ r < R, 0 ≤ θ < 2π, t > 0, (7)
u(r, θ, 0) = u0(r, θ) ≥ 0,

0 ≤ r ≤ R, 0 ≤ θ < 2π, (8)

γutr − αut = −δur + βu+ γ(− 2

R3
uθθ

+
1

R2
uθθr)− α

1

R2
uθθ, on ΓR, (9)
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with

D(r|r0) =
1

ϵ
max

(
0,

1

ϵ
[ϵ− |r − r0|]

)
. (10)

The above equations (7)-(9) are defined in the
two-dimensional domain that may be growing or de-
creasing in time. This problem can be called the
moving boundary problem which is difficult to solve.
The stability and convergence of numerical methods
for the linear reaction-diffusion problem on a one-
dimensional growing domain have been investigated
[24].

In order to change the above moving boundary
problem to a fixed one, we make the following coor-
dinate transformation

r̄ = r/R(t),
θ̄ = θ,
t̄ = t,

and denote

u(r, θ, t) = u(r̄R(t̄), θ̄, t̄) ≡ ū(r̄, θ̄, t̄).

Then,
∂ū

∂θ̄
=

∂u

∂θ
, (11)

∂ū

∂r̄
=

∂u

∂r

∂r

∂r̄
=

∂u

∂r
R(t), (12)

∂ū

∂t̄
=

∂u

∂r

∂r

∂t
+

∂u

∂t

= r̄R′(t)
∂u

∂r
+

∂u

∂t
, (13)

and
∂2ū

∂r̄t̄
=
(∂u
∂r

R(t)
)
t̄

=
∂2u

∂r2
r̄R′(t)R(t)+

∂2u

∂r∂t
R(t)+

∂u

∂r
R′(t).(14)

According to the above relations (11)-(14), the
moving boundary problem (7)-(9) are transformed to
the following fixed boundary problem

ūt̄ =
1

R2
ūr̄r̄ +

( 1

r̄R2
+

r̄R′(t̄)

R

)
ūr̄ +

1

r̄2R2
ūθ̄θ̄

+D̄(r̄|0.5)F [ū(0.5, θ̄, t̄)], (15)

0 ≤ r̄ < 1, 0 ≤ θ̄ < 2π, t̄ > 0,

ū(r̄, θ̄, 0) = ū0(r̄, θ̄) ≥ 0,

0 ≤ r̄ ≤ 1, 0 ≤ θ̄ < 2π, (16)
γ

R
ūt̄r̄ − αūt̄ =

γr̄R′(t̄)

R2
ūr̄r̄ + (

γR′(t)

R2

−α
r̄R′(t̄)

R
− δ

R
)ūr̄ + βū− (

2γ

R3

+
α

R2
)ūθ̄θ̄ +

γ

R3
ūθ̄θ̄r̄, on Γ̄, (17)

with

D̄(r̄|0.5) = 1

ϵ
max

(
0,

R

ϵ
[
ϵ

R
− (r̄ − 0.5)]

)
, (18)

and
Γ̄ =

{
(r̄, θ̄)

∣∣r̄ = 1, 0 ≤ θ̄ ≤ 2π
}
. (19)

Considering the symmetry, the problem (15)-(19)
is reduced to the following one-dimensional equa-
tions,

ūt =
1

R2
ūr̄r̄ +

( 1

r̄R2
+

r̄R′(t)

R

)
ūr̄ + D̄(r̄|0.5)

F [ū(0.5, t)], 0 ≤ r̄ < 1, t > 0, (20)
ū(r̄, 0) = ū0(r̄) ≥ 0, 0 ≤ r̄ ≤ 1, (21)
γ

R
ūtr̄ − αūt =

γr̄R′(t)

R2
ūr̄r̄ + (

γR′(t)

R2

−α
r̄R′(t)

R
− δ

R
)ūr̄ + βū, at r̄ = 1, (22)

with

D̄(r̄|0.5) = 1

ϵ
max

(
0,

R

ϵ
[
ϵ

R
− (r̄ − 0.5)]

)
. (23)

3 Adaptive numerical method

We fix a mesh point at the location of heat source
r̄ = 0.5, and divide the computational domain into
two subdomains [0, 0.5] and [0.5, 1]. Applying the
MMPDE6

∂2ẋ

∂ξ2
= −1

τ

∂

∂ξ

(
M

∂x

∂ξ

)
(24)

in each subdomain, we can get a special time-
dependent adaptive mesh 0 = r̄0 < r̄1(t) < ... <
r̄k−1(t) < r̄k = 0.5 < r̄k+1(t) < ... < r̄N = 1. In
the numerical computing, the MMPDE6 is discretized
by the centered finite differences method

ẋi+1 − 2ẋi + ẋi−1 = −1

τ

(
Mi+ 1

2
(xi+1 − xi)

−Mi− 1
2
(xi − xi−1)

)
. (25)

3.1 The left boundary condition

Equation (20) is singular at point r̄ = 0 which is in-
troduced by the coordinate transformation (5). To re-
move this singularity, we integrate equation (1) in a
small disc [22]

Ω∆r1
2

=
{
(r, θ)

∣∣0 ≤ r ≤ ∆r1
2

, 0 ≤ θ < 2π
}
,

WSEAS TRANSACTIONS on MATHEMATICS Hancan Zhu, Kewei Liang

E-ISSN: 2224-2880 288 Issue 3, Volume 12, March 2013



where ∆r1 := r1 − r0 = R(t)(r̄1 − r̄0). Since the
heat source is outside of the disc, we get∫

Ω∆r1
2

∂T

∂t
dΩ =

∫
Ω∆r1

2

∆TdΩ.

Then we obtain

π∆r21
4

∂u

∂t
(0, 0, t) =

∆r1
2

∫ 2π

0

∂u

∂r
(
∆r1
2

, θ, t)dθ,

resorting to the Gauss’s theorem and the mid-point
rule. Using the symmetry and the coordinate trans-
formation, we have the following equation

R∆r̄1
4

ūt(0, t) =
1

R

∂ū

∂r̄

(∆r̄1
2

, t
)
, (26)

which will be used as the left boundary condition for
equation (20).

3.2 The moving collocation method

In this subsection, the problem (20)-(23) with its left
boundary condition (26) is discretized by the moving
collocation method [23]. Let Ii = [r̄i, r̄i+1], i =

0, ..., N − 1 and define the local coordinate s(i) by

s(i) := (r̄ − r̄i(t))/Hi(t), Hi(t) := r̄i+1(t)− r̄i(t).

The solution ū(r̄, t) can be approximated by the fol-
lowing piecewise cubic Hermite polynomial

p(r̄, t) = vi(t)ϕ1(s
(i)) + vr̄,i(t)Hi(t)ϕ2(s

(i))

+ vi+1(t)ϕ3(s
(i)) + vr̄,i+1(t)Hi(t)ϕ4(s

(i)),

for r̄ ∈ Ii, i = 0, ..., N − 1, (27)

where vi(t) and vr̄,i(t) are the approximations to
ū(r̄i, t) and ūr̄(r̄i, t). The shape functions are given
by

ϕ1(s) := (1 + 2s)(1− s)2, ϕ2(s) := s(1− s)2,

ϕ3(s) := (3− 2s)s2, ϕ4(s) := (s− 1)s2.

For r̄ ∈ Ii, i = 0, ..., N − 1, we can derive that

pr̄(r̄, t) =
1

Hi(t)

(
vi(t)

dϕ1

ds
+ vr̄,i(t)Hi(t)

dϕ2

ds

+ vi+1(t)
dϕ3

ds
+ vr̄,i+1(t)Hi(t)

dϕ4

ds

)
,

pr̄r̄(r̄, t) =
1

H2
i (t)

(
vi(t)

d2ϕ1

ds2
+ vr̄,i(t)Hi(t)

d2ϕ2

ds2

+ vi+1(t)
d2ϕ3

ds2
+ vr̄,i+1(t)Hi(t)

d2ϕ4

ds2

)
,

pt(r̄, t) =
dvi(t)

dt
ϕ1 +

(
dvr̄,i(t)

dt
Hi(t)

+ vr̄,i(t)
dHi(t)

dt

)
ϕ2 +

dvi+1(t)

dt
ϕ3

+

(
dvr̄,i+1(t)

dt
Hi(t) + vr̄,i+1(t)

dHi(t)

dt

)
ϕ4

−pr̄(r̄, t)

(
dr̄i
dt

+ s(i)
dHi(t)

dt

)
,

ptr̄(r̄, t) =
1

Hi(t)

[
dvi(t)

dt

dϕ1

ds
+

(
dvr̄,i(t)

dt
Hi(t)

+ vr̄,i(t)
dHi(t)

dt

)
dϕ2

ds
+

dvi+1(t)

dt

dϕ3

ds

+

(
vr̄,i+1(t)Hi(t) + vr̄,i+1(t)

dHi(t)

dt

)
dϕ4

ds

]
−pr̄(r̄, t)

Hi(t)

dHi(t)

dt
− pr̄r̄(r̄, t)

(
dr̄i
dt

+ s(i)
dHi(t)

dt

)
,

where ϕj ,
dϕj

ds
,
d2ϕj

ds2
, j = 1, · · · , 4 are functions of

s(i).
Following the processes in [23], the equation (20)

is rewritten into the general divergence form

ūt −
( 1

r̄R2
+

r̄R′(t)

R

)
ūr̄ − D̄(r̄|0.5)F [ū(0.5, t)]

=
∂

∂r̄

(
1

R2
ūr̄

)
. (28)

Using the idea of cell average for each half of Ii (i =
0, · · · , N−1), the piecewise linear approximation and
the moving collocation points rij = r̄i(t) + cjHi(t)
(j = 1, 2), we obtain

pt(ri1, t)−
( 1

ri1R2
+

ri1R
′(t)

R

)
pr̄(ri1, t)

−D̄(ri1|0.5)F [p(0.5, t)]

=
1

R2Hi

[
−(1 + 2/

√
3)pr̄(r̄i, t)

+(4/
√
3)pr̄(

r̄i + r̄i+1

2
, t)

+ (1− 2/
√
3)pr̄(r̄i+1, t)

]
, (29)

pt(ri2, t)−
( 1

ri2R2
+

ri2R
′(t)

R

)
pr̄(ri2, t)

−D̄(ri2|0.5)F [p(0.5, t)]

=
1

R2Hi

[
−(1− 2/

√
3)pr̄(r̄i, t)

−(4/
√
3)pr̄(

r̄i + r̄i+1

2
, t)

+ (1 + 2/
√
3)pr̄(r̄i+1, t)

]
. (30)
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Similarly, the boundary conditions and the initial con-
ditions can be approximated by[ γ

R
ptr̄ − αpt −

γr̄R′(t)

R2
pr̄r̄ − (

γR′(t)

R2

−α
r̄R′(t)

R
− δ

R
)ūr̄ − βp

]∣∣∣∣
r̄=1

= 0, (31)

R∆r̄1
4

pt(0, t)−
1

R
pr̄

(
∆r̄1
2

, t

)
= 0, (32)

and

p(r̄i, 0) = ū0(r̄i), (33)

pr̄(r̄i, 0) =
dū0
dr̄

(r̄i), (34)

where i = 0, 1, · · · , N .
After the above spatial discretization, the discrete

mesh equation (25) of MMPDE6 and the discretized
PDE system involving the collocation approximation
(29)-(30) for the physical PDE, the corresponding
boundary conditions (31)-(32) and initial condition
(33)-(34) form an ODE system which is solved by the
ODE solver ODE15s.

4 Numerical examples

In this section, some numerical experiments will be
presented which includes both linear and curvilinear
motions of the heat source. The influence of the ve-
locity of heat source on the blow-up will be investi-
gated. And the efficiency of the adaptive moving mesh
method will be demonstrated.

The parameter τ in MMPDE6 is given by τ =
1× 10−3. And the monitor function M(r̄, t) gives [3]

M(r̄, t) = aū2 + b
(
(r̄ − 0.5)2 + ϵ1

)− 1
4

+(1− a− b)(r̄2 + ϵ1),

with a = 0.4, b = 0.3, ϵ1 = 1
(N−1)2

. Here N is the
number of spatial mesh points which is taken by 65 in
all following examples. In numerical computing, the
monitor function M is always replaced by a smoothed
one [25]

M̃i =

√√√√√√√√
i+p∑

k=i−p

(Mk)2
(

γ
1+γ

)|k−i|

i+p∑
k=i−p

(
γ

1+γ

)|k−i|
,

where γ > 0 and p ≥ 0 are two smoothing pa-
rameters, given by γ = 2 and p = 2. The pa-
rameters in the artificial boundary conditions are [22]

Table 1: The blowup times of the line movement of
the heat source (36)

k = 0 t = 0.590721677
k = 1 t = 0.667461343
k = 2 t = 1.297749062
k = 3 not blowup

α = −(6R
√
s0 + 1), β = −s0(3 + 2R

√
s0), γ = 2R

and δ = 6Rs0, where we choose s0 = 4.0.
The initial value of the temperature is

T0(x, y) =

{
cos2(π(r−3)

6 ), r ≤ 3
0, other

where r =
√

x2 + y2.

4.1 linear motion of the heat source

First, we consider the case of the linear motion of the
heat source. The location of the heat source gives

{(x0, y0)| r0(t) :=
√

x0(t)2 + y0(t)2

= kt+ 3} , (35)

where k ≥ 0 is a parameter which denotes the veloc-
ity of the heat source. In this case, the heat source
is moving at a constant speed. The blowup times are
listed in table 4.1. It shows that the blowup time in-
creases as the heat source moves faster. And when the
heat source moves fast enough, the blowup will not
happen (see the case of k = 3 in the table). This is
because the heat source is continually being exposed
to the new cool surroundings as it moves and the heat
is diffused. This phenomenon is consistent with the
case of one-dimension [1, 3].

When k = 0, the heat source is fixed (figure 1).
In this case, heat is supplied at the same location, and
accumulated from time to time. So the blow-up hap-
pens at time t = 0.590721677. From the bottom-Left
of figure 1, we can see the blow-up happens at the lo-
cation of the heat source. The top-left and top-right
subgraphs show the blow-up profiles in variable r̄ and
in computational variable ξ respectively. It reveals
that the profiles in computational variable are much
smoother. This demonstrates the effective of our mov-
ing collocation method. The blow-up profiles in vari-
able x, y is shown in the bottom-left subgraph. It can
be seen that the temperature is still very low at the
locations far away from the heat source. The adap-
tive mesh is shown in the bottom-right subgraph. It
is clear that a lot of mesh grids are gathered near the
heat source.
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Figure 1: r0(t) = kt + 3 with k = 0. Top-Left: The
blow-up profiles T/Tmax in the variable r̄. Top-Right:
The blow-up profiles T/Tmax in the computational vari-
able ξ. Bottom-Left: The blow-up profile in the variables
x, y. Bottom-Right: The adaptive mesh.

Figure 2 and figure 3 are corresponding to the
cases of k = 1 and k = 2 respectively. In these cases,
the heat source moves at a low speed. The heat is not
able to diffuse in time. The blow-up happens. When
k = 3, the heat source moves at a high speed. The heat
diffuses in time, and the blow-up is prevented (figure
4). Interestingly, the highest temperature is not at the
heat source but at the center point of the domain (see
the Bottom-Left of figure 4). This can be explained
that the heat is accumulated at the center.

4.2 Curvilinear motion of the heat source

Now, we consider the case of the curvilinear motion
of the heat source. The location of the heat source is{

(x0, y0)
∣∣r0(t) :=

√
x0(t)2 + y0(t)2

= k sin(πt) + 3
}
, (36)

where k is a parameter. In this situation, the circle of
the heat source amplifies or lessens.

Figure 5 is corresponding to the case k = 1.
From the figure, we can see that the blow-up happens.
The blow-up time for this case is 0.869099193. The
top-left, top-right and bottom-right subgraphs show
the profiles in the different variables. It shows that
the profiles in the computational variable ξ are much
smoother. And the bottom-right subgraph gives the
adaptive mesh. Figure 6 shows the numerical re-
sults of the case k = 2. The blow-up happens at
3.234220953.

5 Conclusions

In this paper, a new mathematical model is intro-
duced for the moving heat source problem in two-
dimensions. Considering the symmetry, the model is
reduced to the one-dimensional problem by using the
artificial boundary condition method and coordinate
transformations. Then a moving collocation method
is proposed for solving the problem. Numerical re-
sults show that the blow-up time increases as the heat
source moves faster. And the blow-up will be avoided
when the speed is fast enough.

Our present work has mainly focused on the influ-
ence of the speed of the heat source on the blow-up in
two-dimensions. In fact, the size and strength of the
source may also influence the blow-up phenomenon
[6]. The numerical investigation of blow-up in these
factors are also very interesting. And this research is
ongoing.
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Figure 2: r0(t) = kt + 3 with k = 1. Top-Left: The
blow-up profiles T/Tmax in the variable r̄. Top-Right:
The blow-up profiles T/Tmax in the computational vari-
able ξ. Bottom-Left: The blow-up profile in the variables
x, y. Bottom-Right: The adaptive mesh.
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Figure 3: r0(t) = kt + 3 with k = 2. Top-Left: The
blow-up profiles T/Tmax in the radius variable r̄. Top-
Right: The blow-up profiles T/Tmax in the computational
variable ξ. Bottom-Left: The blow-up profile in the vari-
able x, y. Bottom-Right: The adaptive mesh.
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Figure 4: r0(t) = kt + 3 with k = 3. Top-Left: The
blow-up profiles T/Tmax in the radius variable r̄. Top-
Right: The blow-up profiles T/Tmax in the computational
variable ξ. Bottom-Left: The blow-up profile in the vari-
able x, y. Bottom-Right: The adaptive mesh.
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Figure 5: r0(t) = k sin(πt) + 3 with k = 1. Top-Left:
The blow-up profiles T/Tmax in the radius variable r̄. Top-
Right: The blow-up profiles T/Tmax in the computational
variable ξ. Bottom-Left: The blow-up profile in the vari-
able x, y. Bottom-Right: The adaptive mesh.
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Figure 6: r0(t) = k sin(πt) + 3 with k = 2. Top-Left:
The blow-up profiles T/Tmax in the radius variable r̄. Top-
Right: The blow-up profiles T/Tmax in the computational
variable ξ. Bottom-Left: The blow-up profile in the vari-
able x, y. Bottom-Right: The adaptive mesh.
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